EFFICACY OF ABLATION THERAPY FOR SECONDARY HYPERPARATHYROIDISM BY ULTRASOUND GUIDED PERCUTANEOUS THERMOABLATION

JUNFENG ZHAO, LINXUE QIAN, YUAN ZU, YING WEI, and XIANGDONG HU
Department of Ultrasound, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China

Abstract—The objective of this study was to explore the value of ultrasound-guided percutaneous microwave thermoablation to treat secondary hyperparathyroidism (SHPT). One hundred and thirty-eight parathyroid glands from 56 patients with SHPT were ablated in this study. All the parathyroid glands were evaluated by real-time contrast-enhanced ultrasound before, during and after ablation. Changes in serum parathyroid hormone (sPTH) levels were measured before treatment and at 1 h, 1 wk, 1 mo and 6 mo after thermoablation treatment. All 56 cases had a 1-mo follow-up, and 34 cases had a 6-mo follow-up. The sPTH level of the 54 cases 1 mo after ablation was significantly lower than that before ($p < 0.05$). In the 34 cases that had a 6-mo follow-up, the sPTH levels were also significantly lower at 6 mo after ablation than before ($p < 0.05$). Bone pain in patients improved post-operatively ($p < 0.05$), but itchiness and insomnia did not improve ($p > 0.05$). Ultrasound-guided percutaneous microwave thermoablation is a feasible and effective non-surgical alternative treatment for SHPT patients. (E-mail: qianlinxue2002@163.com)

Key Words: Secondary hyperparathyroidism, Serum parathyroid hormone, Thermal ablation, Ultrasound.

INTRODUCTION

Chronic kidney disease (CKD) is a major chronic disease with a devastating effect on human health. CKD has a morbidity of 10%, as many patients will progress to chronic renal failure (CRF). About 26.3% of CKD patients have combined secondary hyperparathyroidism (SHPT), which is the most common serious complication of CRF (Douthat et al. 2003; Young et al. 2004). Serum parathyroid hormone (sPTH) is the main hormone that regulates serum calcium and phosphorous levels. Low serum calcium and high serum phosphorus can cause mental abnormalities, muscle spasms and even lead to respiratory or cardiac arrest (Moe et al. 2006; Zhang et al. 2013b). Among the symptoms, bone pain, itching and insomnia are typical, which seriously affect the life quality of patients (Yao et al. 2009). Traditional treatment strategies for SHPT include drug treatment and parathyroid surgery. For refractory SHPT, drug therapy is ineffective, but surgical treatment is invasive and traumatic. Furthermore, many patients do not tolerate surgical treatment. As a result, an effective, minimally invasive therapeutic strategy is needed for the treatment of SHPT.

Current guidelines on refractory SHPT incorporate complicated treatment options that are difficult to use clinically and have very low drug control effect (Bolasco 2011; Morrone et al. 2011; Panichi et al. 2010) and poor treatment efficacy. When patients with SHPT develop hyperplasia that is visible on imaging, but the hyperplastic tissue is small or fewer than four visible hyperplastic parathyroids are found, surgical removal of the parathyroid might not be complete and a secondary surgery might be needed. Because growth control of the parathyroid could be damaged in late nodular hyperplasia of parathyroid with CRF, the parathyroid might result in local invasive growths (Olson and Leight 2002), and this is the cause of recurrent symptoms after treatment of secondary hyperparathyroidism. The 1-y recurrence rate of gland resection can be as high as 30% (Olson and Leight 2002) or patients can be reluctant to undergo surgery.
Ultrasound-guided interventions are an effective alternative (Lacobone 2006). Recent reports generally indicate ultrasound-guided percutaneous alcohol injection therapies (Chen et al. 2011; Douthat et al. 2011) for clinical applications have gradually been recognized. Ethanol injection therapy is more commonly used as a minimally invasive treatment of SHPT, but incomplete ablation with a 1-y recurrence rate of 80% has limited its clinical application.

Recently, thermal ablation treatments have changed SHPT treatment. Microbubbles are generated by ablation and detectable by ultrasound imaging. It was reported that using radiofrequency can ablate tumors ≤5 cm and the tumor inactivation rate could be >90% (Lencioni et al. 2003; Lin et al. 2004; Shiina et al. 2005). Furthermore, differences in the efficacy and long-term survival rate after microwave ablation and radiofrequency ablation were not statistically significant (Lu et al. 2005; Shibata et al. 2002). Research on the 3-D ablation thermal field using finite elements has laid a solid theoretic and technical foundation for the clinical application of ablation technology (Liang et al. 2001; Tungjitkusolmun et al. 2002). The use of laser therapy and ultrasound-guided percutaneous radiofrequency tissue ablation of a solitary adenoma of the parathyroid gland have been described (Bennedbaek et al. 2001; Hänsler et al. 2002). Ultrasound-guided percutaneous microwave ablation of benign thyroid nodules was reported as a feasible technique (Feng et al. 2012), and microwave ablation to clinically treat SHPT should be feasible.

This study evaluated the use of ultrasound-guided percutaneous microwave thermoablation to treat SHPT.

MATERIALS AND METHODS

This study was approved by the Capital Medical University Ethics Committee and written informed consent was obtained from all patients before the study.

Participants

Fifty-six patients presenting with SHPT to the Department of Nephrology at Beijing Friendship Hospital from September 2012 to September 2013 were enrolled in this study. The patients included 26 males and 30 females with an age range of 29–82 y (55.02 ± 10.01). The average period of hemodialysis was 7.89 y with a range of 3.5 to 12 y; the average level of sPTH was 1256.4 pg/mL with a range of 638–2500 pg/mL. The average longitudinal diameter of nodules was 1.35 cm with a range of 0.5–3.5 cm.

Inclusion/exclusion criteria

Patients who were diagnosed with SHPT (sPTH >300 pg/mL) and the presence of parathyroid gland hyperplasia determined by ultrasound (Fig. 1a) and radionuclide imaging were included (Fig. 1b). Patients were

Fig. 1. A 54-y-old male with SHPT and CRF for 10 y. (a) B-mode ultrasound reveals a parathyroid hyperplasia of 28.0 × 8.5 mm (arrow). (b) A radionuclide image reveals the same parathyroid hyperplasia. SHPT = secondary hyperparathyroidism; CRF = chronic renal failure.
excluded if radionuclide imaging revealed an ectopic parathyroid hyperplasia that the microwave antenna pin or needle probe could not reach or if the parathyroid had been removed for autologous transplantation. Additionally, patients who had received kidney transplants; undergone chemotherapy; or who had other diseases such as coronary heart disease, tuberculosis or those that influence bone metabolism, serum calcium or serum phosphorous were also excluded. Patients taking glucocorticoids or patients with difficult parathyroid punctures that would inhibit complete ablation were also excluded.

Procedures

All procedures used a Phillips IU22 ultrasound imaging platform (Amsterdam, Netherlands). All patients were diagnosed using a L12-5 transducer of frequency 5–12 MHz. Microwave therapeutic equipment (KY-2000; Kangyou Medical, Nanjing, China) was used to administer microwave energy at a frequency of 2450 MHz. The microwave generator is capable of producing up to 100 W of power (30 W power was used in the study) with an antenna diameter of 2 mm, a total length of 100 mm and a transmit segment length of 5 mm. SonoVue (Bracco, Italy) was used as the ultrasound contrast agent; it is sulfur hexafluoride gas contained in a phospholipid shell.

Pre-operative procedures included collection of disease history focusing on history of kidney disease and dialysis, metabolic bone disease (measured on a pain rating scale ranging from 1 to 10 [Hensley and Courtney 2014]), insomnia (measured by the Athens insomnia scale that includes eight sleep factors with four levels within each [Bornivelli et al. 2008; Liu et al. 2014]) and itchy skin (measured by a visual analogue scale ranging from 1 to 10 [Keithi-Reddy et al. 2007]) symptoms. Laboratory tests of sPTH, serum calcium and phosphorous concentrations were also performed. Routine blood work and clotting tests were also verified to be normal before proceeding with the study. Parathyroid ultrasound (Fig. 1a), to measure the length and diameter of the parathyroid along the long axis in longitudinal sections and short axis on transverse sections and radionuclide imaging (99mTc-MIBI; Fig. 1b) were used to confirm the number, size and blood supply of parathyroid glands in every patient.

Before ablation, the parathyroid blood supply was confirmed with contrast-enhanced ultrasound (CEUS) (Fig. 4a) and the ablation pathway was decided. SonoVue (59 mg of lyophilized powder and 5 mL of 0.9% sodium chloride solution) was mixed according to manufacturer protocols. Patients’ necks were hyperextended to expose the parathyroid. Scanning was performed by an experienced sonographer, who was asked to evaluate the nodule location, size and Doppler flow signals. The standard view of CEUS was the section with the most abundant blood-flow signals within the lesion. The CEUS imaging mode was used, focus was positioned under the trailing edge of the lesion and the gain was adjusted to display only the boundaries of the lesion.

Fig. 2. A 49-y-old male with SHPT and CRF for 8 y. (a) Before ablation, a liquid isolation zone > 1 cm wide was created between the parathyroid and the trachea and esophagus (coarse arrow). (b) Before ablation, a liquid isolation zone > 1 cm wide was created between parathyroid and carotid artery (coarse arrow). SHPT 5 secondary hyperparathyroidism; CRF 5 chronic renal failure.
The transducer was turned on, and then 1.2 mL of Sono-Vue was injected into the ulnar vein, followed by injection of 5 mL of normal saline as a flush.

During the investigation, the position of the probe was moved around the nodule, and the patient was asked to avoid swallowing and breath holding. The quiet state and

Fig. 3. A 54-y-old male with SHPT because of CRF for 10 y. (a) Before ablation, a liquid isolation zone was created between the parathyroid and adjacent structures. (b) B-mode ultrasound shows the antenna (arrow) placed in the nodule. SHPT = secondary hyperparathyroidism; CRF = chronic renal failure.

Fig. 4. A 48-y-old male with SHPT because of CRF for 6 y. (a) Contrast-enhanced ultrasound shows high enhancement of the enlarged parathyroidum before ablation (arrow) on left. B-mode ultrasound on right shows the same parathyroid-hyperplasia on one picture. (b) Contrast-enhanced ultrasound shows no enhancement of the ablation zone in the procedure (mark) on the left. B-mode ultrasound shows the same parathyroid hyperplasia (arrow) on the right. SHPT = secondary hyperparathyroidism; CRF = chronic renal failure.
real-time dynamic images were stored in the ultrasound computer (Yuan et al. 2015). Patients were placed in the supine position with their necks fully exposed. Routine neck disinfection was performed and 2% lidocaine was used for topical anesthesia.

To protect the carotid artery, recurrent nerve and other adjacent structures, we devised a modified two-step procedure for ablation. The first step was intended to create a liquid isolation zone between parathyroid and adjacent structures. With a transverse guide and puncture targets appearing in the same ultrasound image on the transverse neck section as the needle and important anatomic structures, 5–20 mL of diluted 2% lidocaine was injected around the hyperplastic parathyroid to establish a buffer zone >1 cm wide between the gland and surrounding tissue (Fig. 2). The second step was the ablation itself. After forming a buffer zone, the ablation needle was inserted under ultrasound guidance into the ablation itself. After forming a buffer zone, the ablation needle was inserted under ultrasound guidance into the parathyroid (Fig. 3b), and ablation was performed for 3–5 s. Next, the probe was raised to move the already-ablated parathyroid toward the ventral side of the patient, away from the esophageal groove and toward the upper part of the trachea, to keep the buffer zone width >1 cm. The patient’s voice was monitored during the operation, and the procedure was halted if dysphonia occurred. Ablation was performed and continued until the microbubbles generated by ablation filled the parathyroid gland completely. The Doppler sonication energy level or Manual Flash setting was used to burst the microbubbles. After ablation, CEUS was performed, and if there was no enhancement of the entire parathyroid gland (Fig. 4b), the procedure did not continue. sPTH was reviewed at 1 h and 1 wk after ablation. If sPTH decreased by <15% of its original level, a second ablation was performed.

Laboratory tests

sPTH, serum calcium and serum phosphorous were measured before the operation and at 1 h, 1 wk, 1 mo and 6 mo after treatment. Uremia patients with chronic renal failure could have abnormal serum calcium, phosphorous metabolic disorders and cause hyperparathyroidism. sPTH was measured by radiation immunoassay method (normal range 11–62 pg/mL). Serum calcium and serum phosphorous were measured by ethylenediamine tetraacetic acid (EDTA) titration method (normal range 2.23–2.5 mmol/L; normal range of serum phosphorous, 0.97–1.62 mmol/L). sPTH is the most important hormone regulating blood calcium and phosphorus levels, as it can increase the level of blood calcium and reduce levels of blood phosphorus. At the same time, the blood calcium and blood phosphorus levels also affect the secretion of sPTH: when serum Ca$^{2+}$ increases, serum phosphorous is reduced and sPTH levels are downregulated; while serum Ca$^{2+}$ is reduced, serum phosphorous increases and sPTH levels are upregulated.

Statistical analyses

Statistical analyses were performed using statistical software (SPSS for Windows version 17.0, SPSS Inc., Chicago, IL, USA). Continuous variables were expressed as the mean ± standard deviation and compared using paired t-tests. A p value < 0.05 was considered significant.

RESULTS

Ablations of 138 parathyroid glands were performed in 56 patients. All operations were performed in the outpatient clinic and each parathyroid was ablated for 5.24 ± 3.31 min. Fifty-six patients completed the 1-mo follow-up, and 34 patients completed the 6-mo follow-up visit.

The level of sPTH about 1 h after the operation decreased significantly compared with that before the operation (p < 0.05), and the level of sPTH 1 wk after the operation was significantly less than before the operation. It was not statistically different from that at 1 h after the operation, but there was a trend for sPTH to further decline by 1 wk. At 1 mo after the operation, sPTH trends increased compared with 1 wk after surgery, but the difference was not statistically significant (p > 0.05). The change in sPTH of all patients 1 mo after the operation indicated a significant short-term efficacy of the minimally invasive treatment for SHPT. The level of sPTH at 6 mo after the operation also decreased significantly compared with before operation in the 34 patients available for follow-up (p < 0.05; Table 1). No statistically significant changes were found for serum calcium or phosphorus at 1 h, 1 wk, 1 mo or 6 mo after treatment (Table 2). The improvement in bone pain was statistically significant (p < 0.05), although improvements in itchy skin and insomnia were not (p > 0.05; Table 3).

Two patients in this study, because of exceptional circumstances, were not included in the statistical

<table>
<thead>
<tr>
<th>Time</th>
<th>N</th>
<th>sPTH (pg/mL)</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before ablation</td>
<td>54</td>
<td>1256.4 ± 461.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 h after ablation</td>
<td>54</td>
<td>438.7 ± 191.8</td>
<td>17.83</td>
<td><0.001</td>
</tr>
<tr>
<td>1 wk after ablation</td>
<td>54</td>
<td>408.8 ± 194.2</td>
<td>17.72</td>
<td><0.001</td>
</tr>
<tr>
<td>1 m after ablation</td>
<td>54</td>
<td>446.7 ± 186.6</td>
<td>17.42</td>
<td><0.001</td>
</tr>
<tr>
<td>6 m after ablation</td>
<td>34</td>
<td>442.4 ± 234.6</td>
<td>13.09</td>
<td><0.001</td>
</tr>
</tbody>
</table>

sPTH = serum parathyroid hormone.
Thermoablation for hyperparathyroidism

J. ZHAI et al.

Table 2. Laboratory tests of serum calcium and phosphorous before and after ablation

<table>
<thead>
<tr>
<th>Time</th>
<th>N</th>
<th>Serum calcium (mmol/L)</th>
<th>t</th>
<th>p</th>
<th>Serum phosphorous (mmol/L)</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before ablation</td>
<td>54</td>
<td>2.25 ± 0.29</td>
<td>1.101</td>
<td>0.276</td>
<td>1.47 ± 0.48</td>
<td>1.19</td>
<td>0.028</td>
</tr>
<tr>
<td>1 h after ablation</td>
<td>54</td>
<td>2.20 ± 0.25</td>
<td>1.042</td>
<td>0.302</td>
<td>1.59 ± 0.93</td>
<td>1.03</td>
<td>0.001</td>
</tr>
<tr>
<td>1 w after ablation</td>
<td>54</td>
<td>2.29 ± 0.23</td>
<td>0.122</td>
<td>0.904</td>
<td>1.55 ± 0.48</td>
<td>0.75</td>
<td>0.100</td>
</tr>
<tr>
<td>1 m after ablation</td>
<td>54</td>
<td>2.25 ± 0.20</td>
<td>0.256</td>
<td>0.800</td>
<td>1.44 ± 0.41</td>
<td>0.91</td>
<td>0.01</td>
</tr>
<tr>
<td>6 m after ablation</td>
<td>34</td>
<td>2.25 ± 0.28</td>
<td>0.122</td>
<td>0.904</td>
<td>1.35 ± 0.34</td>
<td>0.95</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 3. Symptom scores of bone pain, itching and insomnia before and after ablation

<table>
<thead>
<tr>
<th>Time</th>
<th>Bone pain</th>
<th>N</th>
<th>t</th>
<th>p</th>
<th>Itching</th>
<th>N</th>
<th>t</th>
<th>p</th>
<th>Insomnia</th>
<th>N</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before ablation</td>
<td>6.61 ± 2.02</td>
<td>38</td>
<td>7.38 ± 1.53</td>
<td>21</td>
<td>14.14 ± 2.21</td>
<td>14</td>
<td>0.948</td>
<td>0.330</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 h after ablation</td>
<td>2.00 ± 1.19</td>
<td>38</td>
<td>1.460</td>
<td>0.028</td>
<td>2.33 ± 1.15</td>
<td>21</td>
<td>0.848</td>
<td>0.469</td>
<td>2.93 ± 0.73</td>
<td>14</td>
<td>0.918</td>
<td>0.369</td>
</tr>
<tr>
<td>1 w after ablation</td>
<td>1.84 ± 1.03</td>
<td>38</td>
<td>1.999</td>
<td>0.001</td>
<td>2.05 ± 0.87</td>
<td>21</td>
<td>1.318</td>
<td>0.062</td>
<td>3.14 ± 0.95</td>
<td>14</td>
<td>0.918</td>
<td>0.369</td>
</tr>
<tr>
<td>1 m after ablation</td>
<td>2.00 ± 1.01</td>
<td>38</td>
<td>2.109</td>
<td><0.01</td>
<td>2.38 ± 0.87</td>
<td>21</td>
<td>1.326</td>
<td>0.059</td>
<td>3.36 ± 0.75</td>
<td>14</td>
<td>1.224</td>
<td>0.100</td>
</tr>
<tr>
<td>6 m after ablation</td>
<td>1.88 ± 1.01</td>
<td>32</td>
<td>2.047</td>
<td><0.01</td>
<td>2.69 ± 0.60</td>
<td>16</td>
<td>1.293</td>
<td>0.071</td>
<td>3.167 ± 0.72</td>
<td>12</td>
<td>0.895</td>
<td>0.399</td>
</tr>
</tbody>
</table>

analysis. In these two patients, four hyperplastic parathyroids were found in the neck by ultrasound and radionuclide imaging. The level of sPTH initially decreased significantly, but then became re-elevated to the original levels by 1 wk post-treatment. One patient had radionuclide imaging performed again, and one parathyroid hyperplasia was found behind the sternum; the other patient refused any additional testing.

In this study, two cases had temporary hoarseness after operation but recovered without treatment within 1 wk. One case developed permanent hoarseness (laryngoscopy showed the homonymy vocal cord was paralyzed) and was given neurotropic medicine, with gradual recovery. In both cases, the body and sPTH levels may have come to the conclusion that it is necessary to maintain a temperature of 54°C for no less than 1 min or a temperature of 60°C to achieve irreversible tissue coagulation (Godlewski et al. 1988). The mean temperature at the site 5 mm from the electrode was driven rapidly to 60°C, which ensured tumor necrosis, whereas the maximum temperatures at 10 and 15 mm were lower (Feng et al. 2012), which would guarantee the safety of surrounding tissue but could leave residual tumor cells that could resume function after some time. The sPTH 1 mo after treatment did tend to increase. This technique is relatively less invasive compared with surgery and did not cause refractory hypocalcemia in this experiment. In the study, monitoring of serum calcium and phosphorous was necessary to detect potentially low serum calcium after ablation.

Two exceptional cases in this study had different sPTH outcomes after the treatment. In both patients, the parathyroid showed no enhancement on ultrasound or radionuclide images. We first considered the possibility of ectopic parathyroid hyperplasia, which was true with one. This highlights that a limitation of this technology is the requirement for precise localization of nodules and instrumentation. Three patients developed hoarse voices, which could be caused by rapid fluid loss, lack of isolation width, temporary paralysis of the laryngeal
SPTH recurrence after ablation has not been determined in this study, but we will continue to conduct follow-up observation for the long-term effects.

CONCLUSION

In conclusion, ultrasound-guided percutaneous ablation therapy of SHPT is a newly emerging technology that is minimally invasive and highly targetable, requires shorter ablation time and is associated with little pain. Patients do not require hospitalization and have fewer complications, and treatment can be repeated. However, the efficacy and tolerability of ultrasound-guided ablation of SHPT needs further evaluation. In the future, this technology may be a preferred method for treatment of SHPT.

Acknowledgments—This study was funded by Capital characteristic clinical application research in 2013 (Z111107002213143).

REFERENCES

